SafeGrid is earthing design and analysis software. Complies IEEE Std 80 and IEC 60479.

Visit the website for more information: www.elek.com.au/safegrid.htm

## **OVERVIEW**

- The summary of some of the results of an extensive study conducted using a computer program designed to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance in two-layer soils are presonable to determine grounding performance grounding grounding grounding grounding groundi
- The calculated earth grid impedances, surface, step and touch potentials are summarised in several 3D and 2D charts below.

|         |      |                  |                                     | Inputs         | outs                   |                                     |                        |                                        | Grid impedance | Grid Potential | Surface Potential - Maximum |                               | Step Potential - Maximum |  |
|---------|------|------------------|-------------------------------------|----------------|------------------------|-------------------------------------|------------------------|----------------------------------------|----------------|----------------|-----------------------------|-------------------------------|--------------------------|--|
| Case ID |      | Number of meshes | Number of<br>rods<br>(qty:[length]) | Dimensions (m) | Donth of               |                                     | Soil model             |                                        | (Ohms)         | Rise, GPR (V)  | (V)                         | Touch Potential - Maximum (V) | (V)                      |  |
|         | Grid |                  |                                     |                | Depth of<br>burial (m) | Top layer soil resistivity (Ohms.m) | Depth of top layer (m) | Bottom layer soil resistivity (Ohms.m) | SafeGrid       | SafeGrid       | SafeGrid Software           | SafeGrid Software             | SafeGrid Software        |  |
| S1      |      | 1                | 0                                   | 30 x 30        | 0.5                    | 1000                                | 3                      | 100                                    | 11.81          | 11806          | 7224                        | 10511                         | 2817                     |  |
| S4      |      | 4                | 0                                   | 30 x 30        | 0.5                    | 1000                                | 3                      | 100                                    | 8.88           | 8879           | 6724                        | 7059                          | 2068                     |  |
| S4R1    |      | 4                | 1:[10 m]                            | 30 x 30        | 0.5                    | 1000                                | 3                      | 100                                    | 5.92           | 5921           | rod location 4567           | rod location 4526             | 1332                     |  |
| S4R4    |      | 4                | 4:[10 m]                            | 30 x 30        | 0.5                    | 1000                                | 3                      | 100                                    | 3.12           | 3116           | rod locations 2522          | 1906                          | 577                      |  |
| S25HL   |      | 25               | 0                                   | 30 x 30        | 0.5                    | 1000                                | 3                      | 100                                    | 6.35           | 6351           | 5162                        | 4314                          | 1452                     |  |
| S25LH   |      | 25               | 0                                   | 30 x 30        | 0.5                    | 55                                  | 3                      | 430                                    | 3.21           | 3205           | 3182                        | 610                           | 204                      |  |



## 1. Common inputs:

Two layer soil structure model (varying)

Depth of grid conductor burial = 0.5 m

Earth fault current which flows into the grid = 1000 A

Grid conductor type & material = annealed bare stranded copper

Conductor radius = 5.85 mm (eq. to 70  $mm^2$ )

Frequency at which conductor impedance is calculated = 50 Hz

## 2. Colour scales: Scales indicate the colours used by the earthing software to represent high to low values (relative) in their plots. SafeGrid Software - High - Low